Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
Tags
- 경기팀
- 12기
- 도구모음
- 대외활동
- HTML
- 기타정보
- nurisec
- UKPT
- 화학물질
- 국가기록원
- webhacking
- suninatas
- 국정원
- MITRE ATT&CK
- 불법유통
- UKPT level
- PHP
- 국가정보원
- 정보보안
- 파이썬
- 프로젝트
- Los
- 웹 해킹 입문
- 연구모임
- 화학물질안전원
- 화학물질불법유통온라인감시단
- codeup
- 여행
- Service
- 불법유통근절
Archives
- Today
- Total
agencies
CVE database (구축) : 고도화 (combined -> ) 본문
import pandas as pd
import os
import re
import requests
from bs4 import BeautifulSoup
# 초기 설정
csv_file_path = "output.csv"
columns = [
"index", "all_file_name", "CVE-ID", "Description", "Affected_Product", "Affected_Version",
"Vulnerability_Type", "Severity", "CVSS_Score", "Attack_Vector", "Impact-C", "Impact-I", "Impact-A",
"Exploitability", "Published_Date", "Last_Modified_Date",
"Privileges_Required","file_name", "func_name", "old", "new", "Vendor"
]
# `get_info` 함수 정의
def get_info(cve_id):
url = f"https://www.cvedetails.com/cve/{cve_id}/"
headers = {
'User-Agent': (
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 "
"(KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36"
)
}
response = requests.get(url, headers=headers)
if response.status_code != 200:
print(f"Failed to retrieve data for {cve_id}")
return ["None"] * len(columns) # 반환값 길이와 columns 일치
soup = BeautifulSoup(response.content, 'lxml')
try:
# Base Score
base_score_div = soup.find("div", class_="cvssbox")
base_score = base_score_div.text.strip() if base_score_div else "None"
# Severity
severity = "None"
table = soup.find("table", class_="table-borderless")
if table:
rows = table.find_all("tr")
if len(rows) > 1:
severity_td = rows[1].find_all("td")
if len(severity_td) > 1:
severity = severity_td[1].text.strip()
# Published Date
published_date = "None"
updated_date = "None"
vendor_link = "None"
published_div = soup.find("div", class_="col-auto flex-fill")
if published_div:
published_span = published_div.find("span", string="Published")
if published_span and published_span.next_sibling:
published_date = published_span.next_sibling.strip().split()[0]
updated_span = published_div.find("span", string="Updated")
if updated_span and updated_span.next_sibling:
updated_date = updated_span.next_sibling.strip().split()[0]
source_span = published_div.find("span", string="Source")
if source_span and source_span.find_next("a"):
vendor_link = source_span.find_next("a").text.strip()
# Attack Vector and CIA Impacts
attack_vector, con, inte, ava = "None", "None", "None", "None"
cvss_details_row = soup.find("tr", id="cvss_details_row_1")
if cvss_details_row:
details_divs = cvss_details_row.find_all("div")
moa = [div.text for div in details_divs]
if moa:
attack_vector = moa[0].split(":")[1].strip().replace("Access Complexity", "")
con = moa[0].split(":")[4].strip().replace("Integrity Impact", "")
inte = moa[0].split(":")[5].strip().replace("Availability Impact", "")
ava = moa[0].split(":")[6].strip()
# Privileges Required and Exploitability
pr, exploit = "None", "None"
cvss_details_row2 = soup.find("tr", id="cvss_details_row_2")
if cvss_details_row2:
details_divs2 = cvss_details_row2.find_all("div")
moa2 = [div2.text for div2 in details_divs2]
if moa2:
pr = moa2[0].split(":")[3].strip().replace("User Interaction", "")
exploit = moa2[0].split(":")[2].strip().replace("Privileges Required", "")
# CWE ID
cwe_section = soup.find("h2", id="cvedH2CWEs")
cwe_list = []
if cwe_section:
cwe_items = cwe_section.find_next("ul").find_all("a")
cwe_list = [cwe_item.text.strip() for cwe_item in cwe_items]
cwe_ids = ", ".join(cwe_list) if cwe_list else "None"
# Affected Products and Versions
product_list = set()
version_list = set()
product_section = soup.find("ul", {"id": "affectedCPEsList"})
if product_section:
product_items = product_section.find_all("li")
for item in product_items:
product_text = item.text.split("Matching versions")[0].strip()
product_list.add(product_text)
version_info = item.find("div", class_="d-inline-block")
if version_info:
version_text = version_info.text.strip()
if "Version" in version_text or "Versions" in version_text:
version_list.add(version_text)
affected_products = ", ".join(product_list) if product_list else "None"
affected_versions = ", ".join(version_list) if version_list else "None"
# Vulnerability Category
category_section = soup.find("div", class_="col-auto flex-fill pt-2")
category_list = []
if category_section:
category_items = category_section.find_all("span", class_="ssc-vuln-cat")
category_list = [category_item.text.strip() for category_item in category_items]
vulnerability_category = ", ".join(category_list) if category_list else "None"
# Description
description_div = soup.find("div", id="cvedetailssummary")
description = description_div.text.strip() if description_div else "None"
return [
cwe_ids, description, affected_products, affected_versions,
vulnerability_category, severity, base_score, attack_vector, con, inte, ava,
exploit, published_date, updated_date, pr, vendor_link
]
except Exception as e:
print(f"Error parsing data for {cve_id}: {e}")
return ["N/A"] * len(columns)
# 파일명에서 파일명(.c)과 함수명을 추출하는 함수
def extract_file_details(file):
# _OLD 또는 _NEW 앞까지만 파일 이름으로 추출
all_file_name = re.split(r'(_OLD|_NEW)', file)[0]
file_name_match = re.search(r'_[a-f0-9]+_(.+?\.c)', file)
file_name = file_name_match.group(1) if file_name_match else ""
func_match = re.search(r'@@(.+?)(_OLD|_NEW|$)', file)
func_name = func_match.group(1) if func_match else ""
return all_file_name, file_name, func_name
# 기존 CSV 파일 불러오기 및 초기화
if os.path.exists(csv_file_path):
df = pd.read_csv(csv_file_path)
for col in columns:
if col not in df.columns:
df[col] = ""
else:
df = pd.DataFrame(columns=columns)
# 캐시 초기화
#cve_cache = {row['CVE-ID']: row['CVE_description'] for _, row in df.iterrows() if pd.notna(row['CVE-ID'])}
current_index = df['index'].max() if not df.empty else 0
# 새로운 데이터를 처리할 폴더 설정
vul_folder = "only_c"
try:
for root, _, files in os.walk(vul_folder):
for file in files:
if file.endswith(".c"):
print(f"[INFO] Processing: {file}")
file_path = os.path.join(root, file)
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
# 파일 이름 및 수정 여부 확인
all_file_name, file_name, func_name = extract_file_details(file)
if "_OLD.c" in file:
column_to_update = 'old'
elif "_NEW.c" in file:
column_to_update = 'new'
else:
continue
# CVE 및 CWE 정보 추출
cve_match = re.search(r'CVE-\d{4}-\d{4,7}', file)
cve = cve_match.group(0) if cve_match else ""
INFO = get_info(cve)
# 데이터프레임 업데이트 또는 추가
if all_file_name in df['all_file_name'].values:
# 기존 row 업데이트
row_index = df.index[df['all_file_name'] == all_file_name][0]
df.at[row_index, column_to_update] = content
if pd.isna(df.at[row_index, 'CVE-ID']):
df.at[row_index, 'CVE-ID'] = cve
if pd.isna(df.at[row_index, 'file_name']):
df.at[row_index, 'file_name'] = file_name
if pd.isna(df.at[row_index, 'func_name']):
df.at[row_index, 'func_name'] = func_name
# INFO 값을 업데이트
cwe_ids, description, affected_products, affected_versions, vulnerability_category, severity, base_score, attack_vector, con, inte, ava, exploit, published_date, updated_date, pr, vendor = INFO
df.at[row_index, 'Description'] = description
df.at[row_index, 'Affected_Product'] = affected_products
df.at[row_index, 'Affected_Version'] = affected_versions
df.at[row_index, 'Vulnerability_Type'] = vulnerability_category
df.at[row_index, 'Severity'] = severity
df.at[row_index, 'CVSS_Score'] = base_score
df.at[row_index, 'Attack_Vector'] = attack_vector
df.at[row_index, 'Impact-C'] = con
df.at[row_index, 'Impact-I'] = inte
df.at[row_index, 'Impact-A'] = ava
df.at[row_index, 'Exploitability'] = exploit
df.at[row_index, 'Published_Date'] = published_date
df.at[row_index, 'Last_Modified_Date'] = updated_date
df.at[row_index, 'Privileges_Required'] = pr
df.at[row_index, 'Vendor'] = vendor
else:
# 새로운 row 추가
current_index += 1
cwe_ids, description, affected_products, affected_versions, vulnerability_category, severity, base_score, attack_vector, con, inte, ava, exploit, published_date, updated_date, pr, vendor = INFO
new_row = {
"index": current_index,
"all_file_name": all_file_name,
"CVE-ID": cve,
"Description": description,
"Affected_Product": affected_products,
"Affected_Version": affected_versions,
"Vulnerability_Type": vulnerability_category,
"Severity": severity,
"CVSS_Score": base_score,
"Attack_Vector": attack_vector,
"Impact-C": con,
"Impact-I": inte,
"Impact-A": ava,
"Exploitability": exploit,
"Published_Date": published_date,
"Last_Modified_Date": updated_date,
"Privileges_Required": pr,
"file_name": file_name,
"func_name": func_name,
"old": content if column_to_update == 'old' else "",
"new": content if column_to_update == 'new' else "",
"Vendor": vendor
}
df = pd.concat([df, pd.DataFrame([new_row])], ignore_index=True)
except KeyboardInterrupt:
print("\n[INFO] 작업이 중단되었습니다. 현재까지 진행된 내용이 저장되었습니다.")
finally:
df.to_csv(csv_file_path, index=False)
print("[INFO] 모든 파일 처리가 완료되었습니다.")
import pandas as pd
import os
import re
import requests
from bs4 import BeautifulSoup
# 초기 설정
csv_file_path = "output.csv"
columns = [
"index", "all_file_name", "CVE-ID", "Description", "Affected_Product", "Affected_Version",
"Vulnerability_Type", "Severity", "CVSS_Score", "Attack_Vector", "Impact-C", "Impact-I", "Impact-A",
"Exploitability", "Published_Date", "Last_Modified_Date",
"Privileges_Required","file_name", "func_name", "old", "new", "Vendor","patch"
]
# `get_info` 함수 정의
def get_info(cve_id):
url = f"https://www.cvedetails.com/cve/{cve_id}/"
headers = {
'User-Agent': (
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 "
"(KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36"
)
}
response = requests.get(url, headers=headers)
if response.status_code != 200:
print(f"Failed to retrieve data for {cve_id}")
return ["None"] * len(columns) # 반환값 길이와 columns 일치
soup = BeautifulSoup(response.content, 'lxml')
try:
# Base Score
base_score_div = soup.find("div", class_="cvssbox")
base_score = base_score_div.text.strip() if base_score_div else "None"
# Severity
severity = "None"
table = soup.find("table", class_="table-borderless")
if table:
rows = table.find_all("tr")
if len(rows) > 1:
severity_td = rows[1].find_all("td")
if len(severity_td) > 1:
severity = severity_td[1].text.strip()
# Published Date
published_date = "None"
updated_date = "None"
vendor_link = "None"
published_div = soup.find("div", class_="col-auto flex-fill")
if published_div:
published_span = published_div.find("span", string="Published")
if published_span and published_span.next_sibling:
published_date = published_span.next_sibling.strip().split()[0]
updated_span = published_div.find("span", string="Updated")
if updated_span and updated_span.next_sibling:
updated_date = updated_span.next_sibling.strip().split()[0]
source_span = published_div.find("span", string="Source")
if source_span and source_span.find_next("a"):
vendor_link = source_span.find_next("a").text.strip()
# Attack Vector and CIA Impacts
attack_vector, con, inte, ava = "None", "None", "None", "None"
cvss_details_row = soup.find("tr", id="cvss_details_row_1")
if cvss_details_row:
details_divs = cvss_details_row.find_all("div")
moa = [div.text for div in details_divs]
if moa:
attack_vector = moa[0].split(":")[1].strip().replace("Access Complexity", "")
con = moa[0].split(":")[4].strip().replace("Integrity Impact", "")
inte = moa[0].split(":")[5].strip().replace("Availability Impact", "")
ava = moa[0].split(":")[6].strip()
# Privileges Required and Exploitability
pr, exploit = "None", "None"
cvss_details_row2 = soup.find("tr", id="cvss_details_row_2")
if cvss_details_row2:
details_divs2 = cvss_details_row2.find_all("div")
moa2 = [div2.text for div2 in details_divs2]
if moa2:
pr = moa2[0].split(":")[3].strip().replace("User Interaction", "")
exploit = moa2[0].split(":")[2].strip().replace("Privileges Required", "")
# CWE ID
cwe_section = soup.find("h2", id="cvedH2CWEs")
cwe_list = []
if cwe_section:
cwe_items = cwe_section.find_next("ul").find_all("a")
cwe_list = [cwe_item.text.strip() for cwe_item in cwe_items]
cwe_ids = ", ".join(cwe_list) if cwe_list else "None"
# Affected Products and Versions
product_list = set()
version_list = set()
product_section = soup.find("ul", {"id": "affectedCPEsList"})
if product_section:
product_items = product_section.find_all("li")
for item in product_items:
product_text = item.text.split("Matching versions")[0].strip()
product_list.add(product_text)
version_info = item.find("div", class_="d-inline-block")
if version_info:
version_text = version_info.text.strip()
if "Version" in version_text or "Versions" in version_text:
version_list.add(version_text)
affected_products = ", ".join(product_list) if product_list else "None"
affected_versions = ", ".join(version_list) if version_list else "None"
# Vulnerability Category
category_section = soup.find("div", class_="col-auto flex-fill pt-2")
category_list = []
if category_section:
category_items = category_section.find_all("span", class_="ssc-vuln-cat")
category_list = [category_item.text.strip() for category_item in category_items]
vulnerability_category = ", ".join(category_list) if category_list else "None"
# Description
description_div = soup.find("div", id="cvedetailssummary")
description = description_div.text.strip() if description_div else "None"
return [
cwe_ids, description, affected_products, affected_versions,
vulnerability_category, severity, base_score, attack_vector, con, inte, ava,
exploit, published_date, updated_date, pr, vendor_link
]
except Exception as e:
print(f"Error parsing data for {cve_id}: {e}")
return ["N/A"] * len(columns)
# 파일명에서 파일명(.c)과 함수명을 추출하는 함수
def extract_file_details(file):
# _OLD 또는 _NEW 앞까지만 파일 이름으로 추출
all_file_name = re.split(r'(_OLD|_NEW|\.patch)', file)[0]
file_name_match = re.search(r'_[a-f0-9]+_(.+?\.c)', file)
file_name = file_name_match.group(1) if file_name_match else ""
func_match = re.search(r'@@(.+?)(_OLD|_NEW|\.patch)', file)
func_name = func_match.group(1) if func_match else ""
return all_file_name, file_name, func_name
# 기존 CSV 파일 불러오기 및 초기화
if os.path.exists(csv_file_path):
df = pd.read_csv(csv_file_path)
for col in columns:
if col not in df.columns:
df[col] = ""
else:
df = pd.DataFrame(columns=columns)
# 캐시 초기화
#cve_cache = {row['CVE-ID']: row['CVE_description'] for _, row in df.iterrows() if pd.notna(row['CVE-ID'])}
current_index = df['index'].max() if not df.empty else 0
# 새로운 데이터를 처리할 폴더 설정
vul_folder = "test"
try:
for root, _, files in os.walk(vul_folder):
for file in files:
if file.endswith(".vul")or file.endswith(".patch"):
print(f"[INFO] Processing: {file}")
file_path = os.path.join(root, file)
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
# 파일 이름 및 수정 여부 확인
all_file_name, file_name, func_name = extract_file_details(file)
if "_OLD.vul" in file:
column_to_update = 'old'
elif "_NEW.vul" in file:
column_to_update = 'new'
elif ".patch" in file:
column_to_update = 'patch'
else:
continue
# CVE 및 CWE 정보 추출
cve_match = re.search(r'CVE-\d{4}-\d{4,7}', file)
cve = cve_match.group(0) if cve_match else ""
INFO = get_info(cve)
# 데이터프레임 업데이트 또는 추가
if all_file_name in df['all_file_name'].values:
# 기존 row 업데이트
row_index = df.index[df['all_file_name'] == all_file_name][0]
df.at[row_index, column_to_update] = content
if pd.isna(df.at[row_index, 'CVE-ID']):
df.at[row_index, 'CVE-ID'] = cve
if pd.isna(df.at[row_index, 'file_name']):
df.at[row_index, 'file_name'] = file_name
if pd.isna(df.at[row_index, 'func_name']):
df.at[row_index, 'func_name'] = func_name
# INFO 값을 업데이트
cwe_ids, description, affected_products, affected_versions, vulnerability_category, severity, base_score, attack_vector, con, inte, ava, exploit, published_date, updated_date, pr, vendor = INFO
df.at[row_index, 'Description'] = description
df.at[row_index, 'Affected_Product'] = affected_products
df.at[row_index, 'Affected_Version'] = affected_versions
df.at[row_index, 'Vulnerability_Type'] = vulnerability_category
df.at[row_index, 'Severity'] = severity
df.at[row_index, 'CVSS_Score'] = base_score
df.at[row_index, 'Attack_Vector'] = attack_vector
df.at[row_index, 'Impact-C'] = con
df.at[row_index, 'Impact-I'] = inte
df.at[row_index, 'Impact-A'] = ava
df.at[row_index, 'Exploitability'] = exploit
df.at[row_index, 'Published_Date'] = published_date
df.at[row_index, 'Last_Modified_Date'] = updated_date
df.at[row_index, 'Privileges_Required'] = pr
df.at[row_index, 'Vendor'] = vendor
else:
# 새로운 row 추가
current_index += 1
cwe_ids, description, affected_products, affected_versions, vulnerability_category, severity, base_score, attack_vector, con, inte, ava, exploit, published_date, updated_date, pr, vendor = INFO
new_row = {
"index": current_index,
"all_file_name": all_file_name,
"CVE-ID": cve,
"Description": description,
"Affected_Product": affected_products,
"Affected_Version": affected_versions,
"Vulnerability_Type": vulnerability_category,
"Severity": severity,
"CVSS_Score": base_score,
"Attack_Vector": attack_vector,
"Impact-C": con,
"Impact-I": inte,
"Impact-A": ava,
"Exploitability": exploit,
"Published_Date": published_date,
"Last_Modified_Date": updated_date,
"Privileges_Required": pr,
"file_name": file_name,
"func_name": func_name,
"old": content if column_to_update == 'old' else "",
"new": content if column_to_update == 'new' else "",
"Vendor": vendor,
"patch":content if column_to_update == 'patch' else ""
}
df = pd.concat([df, pd.DataFrame([new_row])], ignore_index=True)
except KeyboardInterrupt:
print("\n[INFO] 작업이 중단되었습니다. 현재까지 진행된 내용이 저장되었습니다.")
finally:
df.to_csv(csv_file_path, index=False)
print("[INFO] 모든 파일 처리가 완료되었습니다.")
patch 부분도 추가!
'Ⅳ. 기타' 카테고리의 다른 글
joern 을 통한 취약한 함수에 들어가는 파라미터 backward slicing (0) | 2024.11.27 |
---|---|
vul 폴더에 있는 patch 파일을 통해 취약한 코드 있는 여부 확인해보기 (0) | 2024.11.25 |
deepdfa + linevul 운영(초안)단계 시도해보기! 두번째 (2) | 2024.11.21 |
deepdfa + linevul 운영(초안)단계 시도해보기! (1) | 2024.11.20 |
소스코드 글씨를 예쁘게 색칠되도록 변환해주는 온라인 사이트 (0) | 2024.11.15 |